授業コード	2124024ny1 科目ナンバリング BRB1A02L1
授業名	細胞の科学(RB)
英文名	Cell Science
配当学年	1年 単位数 2.0単位
開講年度・学期	2023年度後期 曜日・時限 水曜2限
実施教室	
授業形態	講義
学位授与方針(DP)	生命科学系DP1
担当教員(先頭者が主担当)	長原 礼宗
目的概要	生物の多くは細胞が集まって個体として存在している。これを多細胞生物といい、一個一個の細胞は他の細胞と連携をとり、分業して個体として成り立っている。このため、細胞の細胞からの信号を受容し、伝達するしくみを発達させている。 本講義により、細胞のしくみが理解できるようになる。また細胞がどのように個体の恒常性を維持しているのかが理解できるようになる。
達成目標	細胞の構造が理解できる。特に、細胞膜や細胞内の構造体の性質・機能が理解できる。 細胞間物質の性質について理解できる。 細胞周期の機構について基本的な考えが理解できる。 授業中の討議を通して授業に主体的に参加し、持論を説明できる。
関連科目	生命科学:本講義と並び、生命科学の基本となる講義になります。
履修条件	
教科書名	Essential細胞生物学第5版、中村桂子、松原謙一、榊 佳之、水島 昇監訳、南江堂
参考書名	細胞の分子生物学第6版、中村桂子、松原謙一監訳、Newton Press
評価方法	中間・期末試験(各45%ずつ)と課題提出(10%)による
事前・事後学習	【事前学習】毎回の授業前までにWebclassの配信動画を見てください。 【事後学習】毎回の授業終了後、Webclassの事後課題を行なってください。 具体的には、各回のテーマ・学習内容に記載の内容をみてください。
自由記載欄	【アクティブラーニング】 授業中に学生間での討論、プレゼンテーションを行います。 【ICTの活用】 Webclassにて課題を出題、提出してもらいます。
テーマ・学習内容	
<第1回>	「生命の基本構造、細胞とは? (細胞説) (1章)」 細胞はフックにより、顕微鏡を用いた観察によって発見された。この回では細胞がいかにして生命の基本構造であるとわかったのか、歴代の科学者の発見を元に論じる。 キーワード:フック、シュライデン、シュワン、パスツール、ウィルヒョウ、細胞説
第1回 事前・事後学習	【事前学習】(80~100分) 毎回の授業前までにWebclassの配信動画を見てください。 【事後学習】(80~100分) 講義に関連する課題・小テストをWebclassを通じて出題するので必ず回答、提出すること。
<第2回>	「細胞を観察するには?(顕微鏡あれこれ)(1章)」 細胞は小さいため、その構造を観察する際には顕微鏡が必要となる。構造を知る上で使われる各種顕微鏡について論じる。 キーワード:光学顕微鏡、位相差顕微鏡、電光顕微鏡、電子顕微鏡
第2回 事前・事後学習	【事前学習】(80~100分) 毎回の授業前までにWebclassの配信動画を見てください。 【事後学習】(80~100分) 講義に関連する課題・小テストをWebclassを通じて出題するので必ず回答、提出すること。
<第3回>	「細胞の中の世界 (細胞小器官) (1章)」 細胞の中にある構造、細胞小器官について、それぞれの名称とその役割について論じる。 キーワード:細胞小器官、原核・真核細胞
第3回 事前・事後学習	【事前学習】(80~100分)毎回の授業前までにWebclassの配信動画を見てください。 【事後学習】(80~100分)講義に関連する課題・小テストをWebclassを通じて出題するので必ず回答、提出すること。
<第4回>	「細胞膜の構造 (11章)」 特定の分子を細胞、あるいは細胞小器官内に閉じ込めておくには障壁となる腰が必要になる。この回では、生体膜(細胞膜)の中でも、主な物質である膜脂質の構造について論 る。また、腰脂質の主成分であるリン脂質の脂質構成は膜の外側と内側とで異なる。また、腰脂質の構成が変わることにより、膜の流動性が変わる。この点について論じる。 キーワード:膜脂質、両親媒性、リン脂質、ステロール、フリップフロップ移動、相互作用、二重結合
第4回 事前·事後学習	【事前学習】(80~100分) 毎回の授業前までにWebclassの配信動画を見てください。 【事後学習】(80~100分) 講義に関連する課題・小テストをWebclassを通じて出題するので必ず回答、提出すること。
<第5回>	「細胞膜による物質の輸送(12章)」 膜は選択的な透過性を有するが、通常輸送できない物質を膜をまたいで輸送する際には膜タンパク質を用いて輸送を行う。この回ではその点について論じる。 キーワード:受動輸送、能動輸送
第5回 事前・事後学習	【事前学習】(80~100分)毎回の授業前までにWebclassの配信動画を見てください。 【事後学習】(80~100分)講義に関連する課題・小テストをWebclassを通じて出題するので必ず回答、提出すること。
<第6回>	「細胞膜による物質の輸送(その2)(12章)」 膜は選択的な透過性を有するが、通常輸送できない物質を膜をまたいで輸送する際には膜タンパク質を用いて輸送を行う。この回ではその点について論じる。 キーワード:チャネルタンパク質、輸送体タンパク質
第6回 事前・事後学習	【事前学習】 (80~100分) 毎回の授業前までにWebclassの配信動画を見てください。 【事後学習】 (80~100分) 講義に関連する課題・小テストをWebclassを通じて出題するので必ず回答、提出すること。
<第7回>	「エネルギー発生源、ミトコンドリアにおける生体膜の役割(14章)」 これまでに学んだ膜をまたいだ物質の輸送により、ミトコンドリアでは水素イオンの汲み出し、流入によってATPの産生が行われる。この回ではこの点について論じる。 キーワード:電子伝達系、FOF1ATPアーゼ
第7回 事前・事後学習	【事前学習】(80~100分) 毎回の授業前までにWebclassの配信動画を見てください。 【事後学習】(80~100分) 講義に関連する課題・小テストをWebclassを通じて出題するので必ず回答、提出すること。
<第8回>	「中間試験および解説」 これまでに学んだ内容についての試験とその解説を行う。
第8回 事前・事後学習	【事前学習】(200分~) 試験範囲について、充分に予習をしてください。
<第9回>	「細胞の骨組み、細胞骨格(17章)」 細胞内には骨組みとして利用されるタンパク質が存在する。それぞれのタンパク質について論じる。 キーワード:細胞骨格、中間径フィラメント、微小管
第9回 事前・事後学習	【事前学習】($80\sim100$ 分) 毎回の授業前までにWebclassの配信動画を見てください。 【事後学習】($80\sim100$ 分) 講義に関連する課題・小テストをWebclassを通じて出題するので必ず回答、提出すること。
<第10回>	「細胞の骨組み、細胞骨格(その2)(17 章)」 細胞骨格のうち、微小管、アクチンについて論じる。 キーワード:微小管、アクチンフィラメント
第10回 事前・事後学習	【事前学習】(80~100分) 毎回の授業前までにWebclassの配信動画を見てください。 【事後学習】(80~100分) 講義に関連する課題・小テストをWebclassを通じて出題するので必ず回答、提出すること。

<第11回>	「細胞と細胞の間はどうなっている?(細胞外マトリックス)(20章)」 細胞と細胞とを結合し、組織が出来上がる。組織によっては、細胞外に充填された物質が存在しており、それらは細胞外マトリックスと呼ばれる。この回では細胞外マトリックスについて論じる。 キーワード:コラーゲン、プロテオグリカン、基底膜
第11回 事前・事後学習	【事前学習】(80~100分) 毎回の授業前までにWebclassの配信動画を見てください。 【事後学習】(80~100分) 講義に関連する課題・小テストをWebclassを通じて出題するので必ず回答、提出すること。
<第12回>	「細胞の複製方法、細胞周期(18章)」 細胞が増殖するには、厳格にDNAの複製が行われる必要がある。また、内容物の倍化も必要である。そのためには、厳密なコントロールが必要になる。それらを経た細胞分裂まで のステップ、細胞周期について概説する。 キーワード:細胞周期、サイクリン、Cdk
第12回 事前・事後学習	【事前学習】(80~100分) 毎回の授業前までにWebclassの配信動画を見てください。 【事後学習】(80~100分) 講義に関連する課題・小テストをWebclassを通じて出題するので必ず回答、提出すること。
<第13回>	「細胞分裂 (18章)」 細胞周期の中でも細胞分裂に焦点を絞って、どのような分子が分裂に関与するのかを論じる。 キーワード:中心体、微小管
第13回 事前・事後学習	【事前学習】(80~100分) 毎回の授業前までにWebclassの配信動画を見てください。 【事後学習】(80~100分) 講義に関連する課題・小テストをWebclassを通じて出題するので必ず回答、提出すること。
<第14回>	「期末試験および解説」 これまでに学んだ内容についての試験とその解説を行う。
第14回 事前・事後学習	【事前学習】(200分~) 試験範囲について、充分に予習をしてください。
質問への対応 (オフィスアワー等)	居室: 12号館207A号室。 オフィスアワー: 月曜日12:50-13:40と水曜日12:50-13:40。
E-Mail address	yuki@mail.dendai.ac.jp
履修上の注意事項 (クラス分け情報)	なし
学習上の助言	Zoom情報です https://dendai.zoom.us/j/95002468807?pwd=c1dOY0hhTnc2QitTdlozWlhxUU8rZz09 ミーティングID: 950 0246 8807 パスコード: 662235
備考	なし
JABEE	
学期末試験 < 事務部記入 >	

学期末試験<事務部記入>		
試験方法	ネット実施	
試験実施日時	2022/12/21 水 2時限	
参照可否	全て可	
着席方法	試験着席	
レポート提出先		
レポート提出期限日時		
備考		