		l I		
授業コード	2109323rm1	科目ナンバリング		
授業名	量子化学(RU)			
英文名	Quantum Chemistry			
配当学年	3年	単位数	2.0単位	
開講年度・学期	2023年度前期	曜日・時限	火曜1限	
実施教室				
授業形態	講義			
学位授与方針(DP)	数学コースDP- 物理学コースDP4 化学コースDP1 数理情報学コースDP-			
担当教員(先頭者が主担当)	類家 正稔			
目的概要	量子力学の考え方を原子、分子の系に適用し、これらの安定性などについて理解します。 まずは、ヘリウム原子を扱うことで変分法などの重要な近似法を理解し、 一般の原子について考えを進め、周期律について理解を深めます。これらを基礎にして、 簡単な分子の量子力学的な扱い方を学び、化学結合の本質、分子の安定性について理解します。			
達成目標	1. 量子力学の手法を一般の原子に適用する方法を理解する。 2. 量子力学の手法を簡単な分子に適用する方法を理解する。 3. パイ電子共役系の安定性を量子化学に基づいて理解する。			
関連科目	量子力学Ⅰ 量子力学Ⅱ			
履修条件	量子力学1の内容を理解している必要があります。			
教科書名	詳解 量子化学の基礎 第2版(東京電機大学出版 類家)			
参考書名	一般的な量子力学の教科書、量子化学の教科書であれば何でもよい。 例えば,原田義也「量子化学(上)(下)」裳華房			
評価方法	以下の割合で評価する。 レポート点数 試験点数 50%			
事前・事後学習		【事前学習】シラバスの指示に従い参考書等の該当箇所に目を通しておくこと。 【事後学習】毎回の授業終了後、参考書等の授業内容に対応する部分を復習すること。		
自由記載欄	【アクティブラーニング】 【ICTの活用】			
テーマ・学習内容				
<第1回>	ガイダンス 二電子系の取り扱い: 変分原理(証明,例題)			
第1回 事前・事後学習	【事前学習】 (120分) 「量子化学」からイメージされる内容について、予習をしてください。 【事後学習】 (120分) 宿題プリントを活用し、講義内容について、充分に復習してください。			
<第2回>	二電子系の取り扱い: ヘリウム原子(変分法),Ritzの変分法			
第2回 事前・事後学習	【事前学習】 (120分)講義で指示する範囲等について、教科書等を用いて充分に予習をしてください。【事後学習】 (120分)宿題プリントを活用し、講義内容について、充分に復習してください。			
<第3回>	多電子系の取り扱い: 一電子近似、ハートリーの方法			
第3回 事前・事後学習	【事前学習】 (120分) 講義で指示する範囲等について、教科書等 【事後学習】 (120分) 宿題プリントを活用し、講義内容について			
<第4回>	多電子系の取り扱い: ハートリー フォックの方法, スレーター朝	道		
第4回 事前・事後学習	【事前学習】 (120分) 講義で指示する範囲等について、教科書等 【事後学習】 (120分) 宿題プリントを活用し、講義内容について			
<第5回>	多電子系の取り扱い: 電子配置,構成原理,周期律,スペクトル項	i.		
第5回 事前・事後学習	【事前学習】 (120分) 講義で指示する範囲等について、教科書等 【事後学習】 (120分) 宿題プリントを活用し、講義内容について			
<第6回>	多電子系の取り扱い: スペクトル項、ラッセル―サウンダース方式			
第6回 事前・事後学習	【事前学習】 (120分) 講義で指示する範囲等について、教科書等 【事後学習】 (120分) 宿題プリントを活用し、講義内容について			
<第7回>	分子の取り扱い: 原子単位系,水素分子イオン,積分変数の変	· 換		
第7回 事前・事後学習	【事前学習】 (120分) 講義で指示する範囲等について、教科書等 【事後学習】 (120分)	【事前学習】(120分) 講義で指示する範囲等について、教科書等を用いて充分に予習をしてください。		
<第8回>	分子の取り扱い: 水表公子(原子価結合法) 格円対応標での			
第8回 事前・事後学習	水素分子(原子価結合法), 楕円対座標での 【事前学習】(120分)	/识刀		
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	【季則子自】 (120万) 講義で指示する範囲等について、教科書等	を用いて充分に予習をしてください。		

	【事後学習】(120分) 宿題プリントを活用し、講義内容について、充分に復習してください。		
<第9回>	分子の取り扱い: 水素分子(分子軌道法)		
第9回 事前・事後学習	【事前学習】 (120分)講義で指示する範囲等について、教科書等を用いて充分に予習をしてください。【事後学習】 (120分)宿題プリントを活用し、講義内容について、充分に復習してください。		
<第10回>	分子の取り扱い: 等核二原子分子		
第10回 事前・事後学習	【事前学習】(120分) 講義で指示する範囲等について、教科書等を用いて充分に予習をしてください。 【事後学習】(120分) 宿題プリントを活用し、講義内容について、充分に復習してください。		
<第11回>	分子の取り扱い: 異核二原子分子		
第11回 事前・事後学習	【事前学習】 (120分) 講義で指示する範囲等について、教科書等を用いて充分に予習をしてください。 【事後学習】 (120分) 宿題ブリントを活用し、講義内容について、充分に復習してください。		
<第12回>	パイ電子系の取り扱い: ヒュッケル法(ブタジエン、ベンゼン)		
第12回 事前・事後学習	【事前学習】 (120分) 講義で指示する範囲等について、教科書等を用いて充分に予習をしてください。 【事後学習】 (120分) 宿題プリントを活用し、講義内容について、充分に復習してください。		
<第13回>	バイ電子系の取り扱い: ヒュッケル法(鎖状ポリエン、環状ポリエン)、分子図、ヒュッケル法(ヘテロ原子を含む系)		
第13回 事前・事後学習	【事前学習】 (120分) 講義で指示する範囲等について、教科書等を用いて充分に予習をしてください。 【事後学習】 (120分) 宿題プリントを活用し、講義内容について、充分に復習してください。		
<第14回>	試験(試験前に、出題意図を説明します)		
第14回 事前・事後学習	【事前学習】 (120分) これまでの講義で扱った範囲等について、十分に復習して試験の準備をして下さい。 【事後学習】 (120分) 試験問題(とくに正解できなかった問題)について、充分に復習してください。		
質問への対応(オフィスアワー等)	【オフィスアワー(類家)】 時間: 下記で確認してください http://chem.ru.dendai.ac.jp/Ruike/ru_i.ke.html 場所: 2号館1階2141A室 講義内容の質問は講義中にしていただくのがベストと考えますが、個人的に質問したい場合は、2141A室まで来て下さい。オフィスアワーに限らず、在室していれば、いつでも対応します。		
E-Mail address	ru.i_keあっとmail.dendai.ac.jp(あっとを@に変えて下さい) http://chem.ru.dendai.ac.jp/Ruike/ru_i.ke.html		
履修上の注意事項(クラス分け情報)	履修上の注意事項に記載するのもみっともないことですが、「講義中は携帯電話、スマートフォンの電源を切ること」を承諾していただけない学生さんは、履修を認めません。		
学習上の助言			
備考			
JABEE			
出地十分時々と古政がごろう			
学期末試験<事務部記入> ====================================	· · · · · · · · · · · · · · · · · · ·		
試験方法	筆記実施		
試験実施日時 4883.48	2022/07/19 火 1時限		
参照可否	ノートのみ可(自筆のみ)		
着席方法	教員にて指示		

レポート提出先

備考